Overcoming heat source limitations for heat pumps in the larger capacity range

Séminaire Energîe-Environnement Univ. de Genève, Oct. 3, 2024

Carsten Wemhoener, Christoph Meier

Outline

Outline of the presentation

- Motivation multi-source system investigation
- Strategies and boundary conditions
- Results on Peak load strategy
- Results on Regeneration strategy
- Summary and Take home messages
- Outlook on follow-on activities
- Discussion

Motivation HP Source

Introduction

- Phase-out of fossil fuel boilers by heat pumps (HP) enables rapid and massive CO₂-reductions
- HP are seen as future heating systems in many scenarios around the world
- Massive HP implementation also needs high quality heat sources
- In particular in retrofit applications limitations of the heat sources can be a major obstacle, especially for higher capacities
- Integration of multiple heat sources can overcome or at least mitigate limitations of individual heat sources
- Synergies among heat sources can also increase performance and cost-effectiveness

Objectives for a climate-neutral Switzerland by 2050

Graphics: Dina Tschumi; Prognos AG

Objectives HP Source

Objectives

- Identification of favourable heat source integration in the higher capacity range (> 50 kW)
- Investigation of integration, design and control of the heat sources
- Evaluation of the energy and economic performance
- Recommendations for favourable heat source integration
- Primary scope are residential buildings and space heating/DHW operation

Heat Pump Sales by capacity

Source:: FWS, 2024

Methodology

Methodology

- Investigations by simulation for heat load of 60 kW 240 kW
 - Existing building, space heating (SH) 160 kWh/(m²yr) 80% SH, 20% domestic hot water (DHW) Radiator emission system, design supply temperature 55 °C
 - New building, SH 15 kWh/(m²yr) 33% SH, 66% DHW Floor heating, design supply temperature 35 °C
- DHW temperature 55 °C, tapping energy acc. to SIA 2024 plus 50% losses
- Weather data Zurich SMA normal / cold year
- Thermal conductivity ground 2.4 W/(mK) and grouting 2 W/(mK) which are typical values for the Swiss middleland
- Design to minimum probe length acc. to SIA 384/6:2021
 "no undercut of average fluid temperature below -1.5 °C after 50 yrs". e.g. inlet -3 °C / outlet 0 °C

Methodology

Investigated strategies

- Primary objective: Overcome limitations of individual heat sources by multiple sources
 - Limitations due to noise in case of outdoor air source, space and depths restrictions for borehole heat exchangers
- Strategy Peak load coverage
 - Design of both sources can be reduced (e.g. design to 50% of heat source capacity at design heat load)
 - Efficiency improvement compared to air-source only

Strategy Regeneration

- · Less ground probes and lower spacing in the ground probe field possible
- Also direct use of regeneration source possible
- Cost benefits due to smaller borehole field design
- For higher capacity the strategies can also be combined

Peak load coverage

Results peak load coverage

- Disproportional savings of ground probe length
- Approximation by energy fraction
- High impact: Field effect
 - System size
 - Compactness of probe field
- Lower impact
 - Properties grouting
 - Weather profile
 - Existing building or new building (DHW-tapping profile)

Peak load coverage

Temperature development

- For ground source-only design: slow and asymptotic decrease of ground temperature
- For peak load operation, steep decrease of the probe temperature at peak load operation
- Due to short term extraction limited to the peak load hours, recovery of temperatures during the year
- Slower decrease of minimum temperatures over the design period of 50 years.

Strategy peak load coverage

System performance

- Seasonal Performance Factor (SPF) increasing with Borehole Heat Exchanger (BHE) fraction
- Existing vs. new built: hardly any difference
- 100% BHE-System:
 - SPF 4.9 in the first year
 - SPF 4.0 in the last year
- Peak load system:
 - SPF relatively constant over 50 years

Strategy peak load coverage

Cost comparison

- Peak load coverage can be cost-competitive
- In midsize and larger systems cost benefits
- With additional cooling also for smaller systems (not depicted)
- To mitigate limitations
 moderate extra cost tolerable
- Fossil bivalent systems do not have cost benefits (at prices as of June 2022)

Strategy Regeneration

Strategy Regeneration

Overcome limitations of ground heat source

- Space/depths limitation by a lower number of ground probes with regeneration
- Regeneration source can also be applied as direct heat source
 => further reduction of use of ground heat source

- Assumed efficiency benefits, e.g. by the use of the heat source with better temperature level
- Assumed cost benefits, e.g. by savings of investment cost for the ground probes to refund the regeneration source
- Investigations (with focus on economy)
 - How can regeneration overcome limitations of the ground source?
 - What regeneration sources are favourable?
 - When is it worthwhile/necessary to regenerate?
 - How much should be regenerated?

Strategy regeneration

Regeneration sources

- Solar Regeneration (PV/T, uncovered selective collector (USC))
 - Well introduced
 - Experience with design, implementation and cost
 - Different suppliers
 - + architectural integration, acceptance
 - limited for retrofit (roof size and condition, orientation)
- Air heat exchanger (AHX)
 - Less projects, less experience
 - Product variety by industry applications
 - Acceptance? (noise issues, architectural integration)
 - Less space requirement \rightarrow benefit retrofitting
- Other possible regeneration sources:
 - Ground water, river/lake water, district heat, waste heat

Depiction of cost effective design

- Case study:
 - Heat load 240 kW
 - Bore field area 3200 m² (13.4 m²/kW)
 → Max. 32 probes at 10 m spacing
 - Depth limitation at ca. 300 m
 - → without regeneration not possible (at minimum about 15% regeneration)
 - \rightarrow min. cost at 60-80% regeneration rate
 - → specific annual cost 270 €/kW

Overcoming depth and space limitations

- Borehole depth can be reduced
 - By larger spacing (no space limits)
 - By regeneration (add. space limits)
- Additional space limitations
 - can be overcome by closer spacing
 - But requires higher regeneration shares
 - However, regeneration is more effective at closer probe spacing
 - Synergies by use of regeneration source e.g. for DHW production

Strategy Regeneration

Cost comparison regeneration

- Design with regeneration
 - By regeneration also total borehole length can be reduced
 - Cost savings by reduced borehole field size
- Cost evaluation
 - At smaller capacities
 Regeneration effect limited, i.e.
 refunding only for small
 regeneration source design
 - At larger capacities Regeneration can yield cost benefits also at larger regeneration shares
 - Cost of regeneration source can be overcompensated by savings in the borehole field
 - Cost effective regeneration share in the range of 40% – 80%

Summary HP source

Take home messages

- Interesting potential for different integration strategies
 - Peak load coverage, regeneration
 - · Also combination of strategies possible (e.g. at higher capacities)

Source limitations of individual heat sources can be overcome

- Enables the application of heat pumps with higher capacity in monovalent operation
- In particular interesting for existing buildings and retrofit projects, where heat source limitations may be a major obstacle
- Cost reduction potentials by synergies of heat sources
 - Integration of multiple heat sources can be more cost-effective than individual heat sources
 - Multiple source integration can thus also be interesting without limitations
- Efficiency potentials by synergies of heat sources
 - Use of best source temperatures, better temperatures by regeneration, etc. can also increase the efficiency

Follow-on activities - Renosource

P&D project boiler replacement

- P&D of boiler replacement in two multi-family houses
 - Replacement boiler of 200 kW in two multi-family houses (ca. 4200 m²)
 - Original concept:
 - Ground probe field at 300 m with regeneration by air-source
 - Space restriction due to steep surrounding, after first drilling additionally depth restriction to 120 m due to artesic water

Present concept for P&D project/Monitoring

- Larger air heat exchanger and ground as peak load coverage
- Combination peak load coverage with regeneration
- Replacement of boiler with two indoor installed propane heat pumps

source: Lägern-Wohnen

Follow-on activities - Renosource

P&D project boiler replacement

- Objectives P&D and Monitoring
 - Real performance of combination of peak load and regeneration strategy
 - Validation of simulation results and models by monitoring data
 - Extended design and control recommendations for multi-source integration
 - Improved design and control of multi-source systems
 - Behaviour of indoor placed propane heat pumps in retrofitting application

State

- Drilling of ground probes in November 2023
- Installation of heat pumps planned for December 2023, but delayed to February 2024
- Commissioning has taken place end of February 2024
- Verification of measurement system
- Some data of regeneration operation of the first summer

source: Lägern-Wohnen

Follow-on activities - Renosource

Simulations: ground temperatures

- 175 kW heat capacity of the heat pumps
- BHX only source: 14 probes at 400 m
- \rightarrow depth of boreholes !!
- BHX only source: 14 probes at 300 m, regenerated
- \rightarrow depth of boreholes !!
- 14 x 120 m peak load, progressive control
- with regeneration
 w/o regeneration
 → subcooling of the ground
- 14 x 120 m peak load, conservative control with regeneration w/o regeneration
 - \rightarrow possible with regeneration

Realised BHX: 16 probes at 100 m

Outline Papieri District

Background

 Rebuilding of an old industrial district of a paper factory

Development

- First buildings commissioned in the end of 2022
- Monitoring started in summer 2023
- Extension of district until 2032 by yearly 100 flats and 2000 m² office/retail space
- Extension of the space heating and cooling system
 - Currently 192 ground probes installed
 - Currently HP capacity of 2 MW installed

Papieri District

Papieri District – Energy concept

- River (Lorze) River power station and thermal energy source
- Energy management Energy management of electricity use for enhanced self-consumption and reduced grid interaction
 - Heat pumps

Centralised heat pumps with natural refrigerant ammonia

- Thermal grid
 Integrated space heating
 and cooling
 - Electricity generation
 6500 m² PV systems on new buildings
- Geothermal heat source/sink Central borehole field with 192 ground probes of 320 m depth

Papieri District - Investigations

Investigations

- Derivation of KPI to characterise system performance by monitoring data for different operation modes
- Modelling/simulation of core components HP and heat sources
- Identification of the optimisation potentials by monitoring/simulation
- Investigation of source management for free coolng vs. regeneration
- Investigation of dual source operation of ground source and river water, also regarding extension of the district
- Overall evaluation of the district regarding plus energy
- Contribution to IEA HPT Annex 61 on «Heat pumps in Positive Energy Districts»

Papieri District – Heating & cooling system

Sketch heating and cooling concept

• 100% renewable heating and cooling in the district

Follow-on activities – Multisource

Upcoming P&D project Multisource

- Follow-on SFOE project on multi-source integration
 - Evaluation of different source combination
 - Focus on combinations where vertical boreholes are not possible
 - Simulation work on different source combinations
- P&D / Monitoring part
 - Also a P&D part is included in the project
 - Collaboration with «Liegenschaften Zurich» and canton Zurich
 - · Idea of combination of surface near ground use in combination with air
 - Validation of simulation results and models by monitoring data

Follow-on activities – Peak'n'Cool for Districts

Upcoming project Peak'n'Cool for districts

- Upcoming SFOE project on Integration of HP in district heating system
 - Heat pump integration for peak load coverage in District heating systems
 - Decentralised integration of ground source heat pumps at larger users for peak load coverage
 - Additional option for summer cooling operation by ground coupled free-cooling or Heat pump/Chiller
 - Extension of connected buildings possible in case of capacity limitations of the district heating due to peak load coverage by HP
- Case studies with utilities and City of Zurich
 - Die Werke Wallisellen, 360° Zürich
 - Case study of City of Zurich on Ground water use
 - SIG as associated partner

Acknowledgment

Results outlined in this presentation have been investigated in the project "HP-source – Integration options for heat sources". The project supervision, support and funding of the Swiss Federal Office of Energy SFOE under the contract SI/502144-01 and the continuation in the P&D project is highly appreciated and acknowledged.

Final report HP-source available for download at https://www.aramis.admin.ch/Texte/?ProjectID=47519

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

Q&A and discussion

Thank you for your attention

Cost assumptions for cost comparisons

Parameter	Specific cost/tariff	Variation/remark
Investment cost		
Air-source HP	1700 €/kW	
Ground-source HP	900 €/kW	
Gas boiler system (averaged)	300 €/kW	
Borehole heat exchanger	100 €/m	
Air heat exchanger (60 kW-240 kW)	1500 – 600 €/kW	
PV/T collector	750 €/m2	
Operational cost		
Electricity tariff	0.20 €/kWh	As of June 2022, strongly dependent on market
Gas tariff	0.15 €/kWh	As of June 2022, strongly dependent on market
Feed-in tariff	0.10 €/kWh	Dependent on site
Component lifetime/interest rate		
Ground probes	50 yrs.	
Heating system components	20 yrs.	
Interest rate (real)	1.5%	

30 Séminaire Energie-Environnement, Uni Genève, Oct. 3, 2024